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Coherence enhancement in nonlinear systems subject to multiplicative Ornstein-Uhlenbeck nois
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We show that for two biologically relevant models with self-sustained oscillations under the action of a
multiplicative Ornstein-Uhlenbeck process, their coherence response behaves nonmonotonically with the pro-
cess correlation time. There is a correlation time for which the quality factor is optimized. This phenomenon is
a consequence of the interplay between the correlation time and the system’s periodicity. This relation is
evidenced through a power law relation with an exponent close to2

1
2 .
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I. INTRODUCTION

Noise is ubiquitous. Over the past decades nonlinear
tems with noise have attracted the attention of many
searchers from different scientific areas. The reason is
constructive role noise plays in processes involving s
organization, pattern formation, and coherence, as well a
biological information processing, energy transduction, a
functionality. A main example is stochastic resonance~SR!, a
phenomenon by which the addition of noise to a system
enhance its coherent response@1,2# ~see Ref.@3# for an ex-
tensive review!. In its most popular assertion SR is asso
ated with a subthreshold nonlinear system, an additive w
noise and a periodic external force. Nevertheless, SR
also occur in systems with different characteristics, e.g.
systems with external aperiodic forcing@4# and in autono-
mous systems without external periodic force but with intr
sic oscillatory behavior@5#. It also happens in multiplicative
stochastic systems@6# or in systems perturbed by colore
noise@7,8#. It can even be found in arrays of oscillators@9# or
in simple systems with time delay@10#. Only very recently
the situation in which the system is subject to both multip
cative and colored noise has been discussed in the litera
In Refs.@11–13# the authors analyze the influence of mul
plicative colored noise on periodically driven linear system
discussing the appearance of nonmonotonous response
changing either the noise intensity or the correlation tim
Moreover, evidence of an SR response in nonlinear syst
with multiplicative colored noise without periodic forcin
but with self-sustained oscillations has been also repo
@14#. These works extend the SR phenomena to system
which the enhancement response appears as a function o
noise correlation time. This behavior could be prope
named correlation time SR, in shorttSR.

II. THE MODELS

In this brief note we analyze the coherence respons
two nonlinear systems with self-sustained oscillations wh
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the noise correlation varies. We considered the Sel’k
model for the glycolytic oscillator@15#

ẋ52x1ly1x2y,

ẏ5b2ly2x2y, ~1!

and the Odell model from population dynamics@16#

ẋ52x@x~12x!2y#,

ẏ5y~x2l!. ~2!

Both models exhibit a supercritical Hopf bifurcation at
certain value of the control parameterl[lH . ~In the
Sel’kov model the bifurcation point depends also on t
value of b!. The stochastic versions of these dynamics
obtained by substituting the deterministic control parame
l, by a time dependent parameter

l t5l1z t , ~3!

wherez t is an stochastic perturbation@17#. This perturbation
is assumed to be an Ornstein-Uhlenbeck process~OU!, i.e., a
stationary Gaussian Markov noise with zero mean,

^z t&50, ~4!

and exponential correlation

^z tz t8&5
D

t
exp~2ut2t8u/t!, ~5!

wheret is the correlation time, andD/t5s2 is the variance
of the noise. In the following we will refer to the noise in
tensity ass.

The numerical integration has been carried out with^l t&
5l in the limit cycle parameter domain with an order tw
explicit weak scheme@18# and with a second-order stron
scheme@19#.
d-
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III. A POWER LAW TIME COUPLING

To analyze the coherence enhancement we use the qu
factor,b, of the power spectrum, defined by the relation@5#
b5hvp /W, whereh is the height of the spectrum principa
peak,vp is the principal peak frequency, andW is the width
of the spectrum principal peak at the heighth/Ae.

In Fig. 1 we show the results of calculatingb for x(t) for
both Eqs. ~1! and ~2!. It is observed that the coherenc
reaches a maximum for a particular value oft;t r . For t
larger thant r the quality factor decreases monotonical
These figures shows that a random perturbation of fixed
tensity acting on the parameter can improve the system
herence if it is exponentially correlated and fluctuates w
the optimalt. The results also indicate that the maximu
position depends on̂l t&.

It is known that in other dynamical systems the period
ity of the limit cycle is related witht r @14#. Looking for a
similar relationship we start considering that

T~l!2TH;Dl ~6!

with TH being the period at the bifurcation point andDl
5ul2lHu being the parameter distance to the bifurcat
point.

However, it is known that the bifurcation point is going
be displaced because of the parametric forcing@20,21#. So
the temporal distance~6! should be properly corrected takin
into account that displacement. This is achieved rewrit
Eq. ~6! as

DT* [uT* ~l!2THu, ~7!

whereT* is the period of the deterministic time series of t
dynamical system evaluated at a distance from the bifu
tion point Dl* 5ul2lH* u. Finally we represent the calcu
lated values fort r(Dl) as a function of the effective perio

FIG. 1. Quality factor for~a! the Sel’kov model evaluated with
b50.6 and different values of̂l t&50.102, 0.106, 0.110, 0.112
0.114, 0.116, 0.118, and 0.120 from top to bottom;s5531023 and
~b! the Odell model for different values of^l t&50.4960, 0.4955,
0.4945, 0.4935, and 0.4925 from top to bottom;s51023. In both
cases we used 100 realizations and a time stepDt51023.
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distanceDT* in Figs. 2~a! and 2~b! for Eqs. ~1! and ~2!,
respectively. It is clear thatt r obeys the following power
law:

t r;DT~l!gS,

t r;DT~l!gO ~8!

with characteristic exponentsgS;20.56 andgO;20.54
for the Sel’kov and Odell model, respectively. Now we app
the relation~6! to the former cases obtaining

t r;T2gS,

t r;T2gO. ~9!

In spite of the different dynamics, both exponents a
close to the value previously obtained for other systems@14#.
This suggests that the phenomenon of coherent enhance
with an OU noise is well characterized by a unique expon
close tog; 1

2 .

FIG. 2. Resonant correlation timet r as a function of the effec-
tive period distanceDT* . Data for~a! the Sel’kov model evaluated
with b50.6, ^l t& in the interval@0.100,0.123# taken with incre-
ments Dl51023, s5531023 and 50 realizations; and~b! the
Odell model evaluated witĥl t& in the interval @0.0005,0.0095#
taken with incrementsDl5531024, s51023 and 50 realizations.
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IV. CONCLUSIONS

Summing up, this work shows that under a parametric
perturbation an enhancement in the coherence of the ou
of the Sel’kov and Odell models occurs as a function oft.
This behavior is a consequence of the interplay between
different time scales: the correlation time and the syst
periodicity. This interplay is evidenced by a power law re
tion characterized by a unique exponent close to2 1

2 .
Nonmonotonous responses of nonlinear dynamical s

tems as a function oft have been reported in other contex
@22,23# or are just appearing in the literature in problems
coupled chaotic oscillators@24#. In Ref. @25# the synchroni-
v.
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zation response of an array of chaotic elements perturbe
a multiplicative OU noise is analyzed. A power law relatin
an optimalt with a relevant system time scale was fou
there. In the particular case of zero coupling the expon
converges to our predicted value of2 1

2 . This result rein-
forces the idea regarding the universality of the exponeng
in characterizing the enhancement effect@26#.
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brera, Int. J. Bifurcation Chaos Appl. Sci. Eng.11, 2663
~2001!.

@26# J. L. Cabrera, J. Gorron˜ogoitia, and F. J. de la Rubia, Phy
Rev. Lett.82, 2816~1999!.
1-3


