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Coherence enhancement in nonlinear systems subject to multiplicative Ornstein-Uhlenbeck noise
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We show that for two biologically relevant models with self-sustained oscillations under the action of a
multiplicative Ornstein-Uhlenbeck process, their coherence response behaves nonmonotonically with the pro-
cess correlation time. There is a correlation time for which the quality factor is optimized. This phenomenon is
a consequence of the interplay between the correlation time and the system’s periodicity. This relation is
evidenced through a power law relation with an exponent cIose%o
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[. INTRODUCTION the noise correlation varies. We considered the Sel’kov
model for the glycolytic oscillatof15]

Noise is ubiquitous. Over the past decades nonlinear sys-
tems with noise have attracted the attention of many re- X=—X+\y+x%y,
searchers from different scientific areas. The reason is the
constructive role noise plays in processes involving self- : 2
organization, pattern formation, and coherence, as well as in y=b=ry=x7, @
biological information processing, energy transduction, and )
functionality. A main example is stochastic resona(@®), a  and the Odell model from population dynam|ds]
phenomenon by which the addition of noise to a system can

enhance its coherent responde?] (see Ref[3] for an ex- x=—x[X(1-x)—y],
tensive review In its most popular assertion SR is associ-
ated with a subthreshold nonlinear system, an additive white y=y(X—\) )

noise and a periodic external force. Nevertheless, SR can
;I/ssc: e(r)rfguv(/iiﬂ Zﬁgmj ;v{;tgriggggn:g rtcﬁﬁhg?rgﬁtderi'ﬁtlgﬁi oi'g_" Ir]:‘ioth_models exhibit a supercritical Hopf bifurcation at a
mous systems without external periodic force but with intrin—Cerfaln value of the_ CO”“TO' par_ametarz)\H. (In the

sic oscillatory behaviof5]. It also happens in multiplicative S€!'kov model the bifurcation point depends also on the
stochastic systemEs] or in systems perturbed by colored valug ofb). The s_toc_hastlc versions pf _these dynamics are
noise[7,8]. It can even be found in arrays of oscillatfed or obtalned_ by substituting the deterministic control parameter,
in simple systems with time deldyL0]. Only very recently A, by atime dependent parameter

the situation in which the system is subject to both multipli-

cative and colored noise has been discussed in the literature. M=NE €)

In Refs.[11-13 the authors analyze the influence of multi-

plicative colored noise on periodically driven linear systemswhere(, is an stochastic perturbati¢a7]. This perturbation
discussing the appearance of nonmonotonous responses isyassumed to be an Ornstein-Uhlenbeck pro(@ss, i.e., a
changing either the noise intensity or the correlation timestationary Gaussian Markov noise with zero mean,
Moreover, evidence of an SR response in nonlinear systems

with multiplicative colored noise without periodic forcing (¢)=0, (4)

but with self-sustained oscillations has been also reported

[14]. These works extend the SR phenomena to systems ignd exponential correlation

which the enhancement response appears as a function of the

noise correlation time. This behavior could be properly D

named correlation time SR, in sharSR. <§t§t’>:7exq_|t_t,|/7)v 5

Il. THE MODELS . . . . .
wherer is the correlation time, anB/ 7= o is the variance

In this brief note we analyze the coherence response dif the noise. In the following we will refer to the noise in-
two nonlinear systems with self-sustained oscillations whertensity aso.
The numerical integration has been carried out Witk
=\ in the limit cycle parameter domain with an order two
* Author to whom correspondence must be addressed. Email adxplicit weak schem¢l18] and with a second-order strong
dress: jlc@ace.bsd.uchicago.edu schemd19].
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T I (a)

FIG. 1. Quality factor for@) the Sel’kov model evaluated with | (b)
b=0.6 and different values of\;)=0.102, 0.106, 0.110, 0.112,
0.114, 0.116, 0.118, and 0.120 from top to botterm:5x 102 and
(b) the Odell model for different values d#;)=0.4960, 0.4955,
0.4945, 0.4935, and 0.4925 from top to bottowm: 1073. In both
cases we used 100 realizations and a time Atep10~ 3.

1
I1l. APOWER LAW TIME COUPLING 10 F .

To analyze the coherence enhancement we use the qualit
factor, 8, of the power spectrum, defined by the relatjém o , L
B=hw,/W, whereh is the height of the spectrum principal -1 0

Pl h : ; 10 10
peak,w, is the principal peak frequency, akidis the width *
of the spectrum principal peak at the heigt/e. AT

In Fig. 1 we show the results of calculatigggfor x(t) for
both Egs.(1) and (2). It is observed that the coherence FIG. 2. Resonant correlation time as a function of the effec-
reaches a maximum for a particular valueof r,. For 7 tive period distanc& T*. Data for(a) the Sel’kov model evaluated
larger thanr, the quality factor decreases monotonically. With b=0.6, (\y) in the interval[0.100,0.123 taken with incre-
These figures shows that a random perturbation of fixed in0entsAA=10"%, ¢=5x10"° and 50 realizations; anth) the
tensity acting on the parameter can improve the system cd2dell model evaluated witi) in the interval[0.0005,0.0095
herence if it is exponentially correlated and fluctuates with@ken with incrementa =5x10"", o=10"" and 50 realizations.
the optimalr. The results also indicate that the maximum o
position depends of\.). dlstanc_eAT* in Figs. 2a) and 2b) for Egs. (l)_ and (2),

It is known that in other dynamical systems the periodic-éSPectively. It is clear that; obeys the following power
ity of the limit cycle is related withr, [14]. Looking for a  1aw:
similar relationship we start considering that

T~ AT(N)7S,
TN =Ty~AX (6)
T~ AT(N)70 8
with Ty being the period at the bifurcation point afd
=|\—\y| being the parameter distance to the bifurcationii, characteristic exponentss~ —0.56 and yo~ —0.54

point. » , _ o for the Sel’kov and Odell model, respectively. Now we apply
However, it is known that the bifurcation point is going to 4 relation(6) to the former cases obtaining

be displaced because of the parametric fordi2@,21]. So
the temporal distancé) should be properly corrected taking
into account that displacement. This is achieved rewriting
Eq. (6) as

7 ~T775,

T,~T7 70, 9
AT*=|T*(\)—Tyl, (7)

In spite of the different dynamics, both exponents are
whereT* is the period of the deterministic time series of the close to the value previously obtained for other systEiv
dynamical system evaluated at a distance from the bifurcaFhis suggests that the phenomenon of coherent enhancement
tion point AN* =|\—\}j|. Finally we represent the calcu- with an OU noise is well characterized by a unique exponent
lated values forr,(AN) as a function of the effective period close toy~ 3.
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IV. CONCLUSIONS zation response of an array of chaotic elements perturbed by
P multiplicative OU noise is analyzed. A power law relating
an optimal 7 with a relevant system time scale was found
Hiere. In the particular case of zero coupling the exponent

Summing up, this work shows that under a parametric O
perturbation an enhancement in the coherence of the outp
of the Sel’kov and Odell models occurs as a functionrof . i . X

. . . converges to our predicted value ef;. This result rein-
This behavior is a consequence of the interplay between th . . . .

. : ) . . orces the idea regarding the universality of the exponent
different time scales: the correlation time and the system .

- > . . in characterizing the enhancement effg2f].
periodicity. This interplay is evidenced by a power law rela-
tion characterized by a unique exponent close-t. ACKNOWLEDGMENTS
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